提交 4f5929a8 authored 作者: kijai's avatar kijai

dwpose node

上级 2e60e3ed
import os
import numpy as np
import torch
from .wholebody import Wholebody
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DWposeDetector:
"""
A pose detect method for image-like data.
Parameters:
model_det: (str) serialized ONNX format model path,
such as https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx
model_pose: (str) serialized ONNX format model path,
such as https://huggingface.co/yzd-v/DWPose/blob/main/dw-ll_ucoco_384.onnx
device: (str) 'cpu' or 'cuda:{device_id}'
"""
def __init__(self, model_det, model_pose, device='cpu'):
self.pose_estimation = Wholebody(model_det=model_det, model_pose=model_pose, device=device)
def __call__(self, oriImg):
oriImg = oriImg.copy()
H, W, C = oriImg.shape
with torch.no_grad():
candidate, score = self.pose_estimation(oriImg)
nums, _, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:, :18].copy()
body = body.reshape(nums * 18, locs)
subset = score[:, :18].copy()
for i in range(len(subset)):
for j in range(len(subset[i])):
if subset[i][j] > 0.3:
subset[i][j] = int(18 * i + j)
else:
subset[i][j] = -1
# un_visible = subset < 0.3
# candidate[un_visible] = -1
# foot = candidate[:, 18:24]
faces = candidate[:, 24:92]
hands = candidate[:, 92:113]
hands = np.vstack([hands, candidate[:, 113:]])
faces_score = score[:, 24:92]
hands_score = np.vstack([score[:, 92:113], score[:, 113:]])
bodies = dict(candidate=body, subset=subset, score=score[:, :18])
pose = dict(bodies=bodies, hands=hands, hands_score=hands_score, faces=faces, faces_score=faces_score)
return pose
# dwpose_detector = DWposeDetector(
# model_det="models/DWPose/yolox_l.onnx",
# model_pose="models/DWPose/dw-ll_ucoco_384.onnx",
# device=device)
import cv2
import numpy as np
def nms(boxes, scores, nms_thr):
"""Single class NMS implemented in Numpy.
Args:
boxes (np.ndarray): shape=(N,4); N is number of boxes
scores (np.ndarray): the score of bboxes
nms_thr (float): the threshold in NMS
Returns:
List[int]: output bbox ids
"""
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= nms_thr)[0]
order = order[inds + 1]
return keep
def multiclass_nms(boxes, scores, nms_thr, score_thr):
"""Multiclass NMS implemented in Numpy. Class-aware version.
Args:
boxes (np.ndarray): shape=(N,4); N is number of boxes
scores (np.ndarray): the score of bboxes
nms_thr (float): the threshold in NMS
score_thr (float): the threshold of cls score
Returns:
np.ndarray: outputs bboxes coordinate
"""
final_dets = []
num_classes = scores.shape[1]
for cls_ind in range(num_classes):
cls_scores = scores[:, cls_ind]
valid_score_mask = cls_scores > score_thr
if valid_score_mask.sum() == 0:
continue
else:
valid_scores = cls_scores[valid_score_mask]
valid_boxes = boxes[valid_score_mask]
keep = nms(valid_boxes, valid_scores, nms_thr)
if len(keep) > 0:
cls_inds = np.ones((len(keep), 1)) * cls_ind
dets = np.concatenate(
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
)
final_dets.append(dets)
if len(final_dets) == 0:
return None
return np.concatenate(final_dets, 0)
def demo_postprocess(outputs, img_size, p6=False):
grids = []
expanded_strides = []
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
hsizes = [img_size[0] // stride for stride in strides]
wsizes = [img_size[1] // stride for stride in strides]
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
return outputs
def preprocess(img, input_size, swap=(2, 0, 1)):
if len(img.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
else:
padded_img = np.ones(input_size, dtype=np.uint8) * 114
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r
def inference_detector(session, oriImg):
"""run human detect
"""
input_shape = (640,640)
img, ratio = preprocess(oriImg, input_shape)
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
output = session.run(None, ort_inputs)
predictions = demo_postprocess(output[0], input_shape)[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
boxes_xyxy /= ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
if dets is not None:
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
isscore = final_scores>0.3
iscat = final_cls_inds == 0
isbbox = [ i and j for (i, j) in zip(isscore, iscat)]
final_boxes = final_boxes[isbbox]
else:
final_boxes = np.array([])
return final_boxes
from typing import List, Tuple
import cv2
import numpy as np
import onnxruntime as ort
def preprocess(
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Do preprocessing for RTMPose model inference.
Args:
img (np.ndarray): Input image in shape.
input_size (tuple): Input image size in shape (w, h).
Returns:
tuple:
- resized_img (np.ndarray): Preprocessed image.
- center (np.ndarray): Center of image.
- scale (np.ndarray): Scale of image.
"""
# get shape of image
img_shape = img.shape[:2]
out_img, out_center, out_scale = [], [], []
if len(out_bbox) == 0:
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
for i in range(len(out_bbox)):
x0 = out_bbox[i][0]
y0 = out_bbox[i][1]
x1 = out_bbox[i][2]
y1 = out_bbox[i][3]
bbox = np.array([x0, y0, x1, y1])
# get center and scale
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
# do affine transformation
resized_img, scale = top_down_affine(input_size, scale, center, img)
# normalize image
mean = np.array([123.675, 116.28, 103.53])
std = np.array([58.395, 57.12, 57.375])
resized_img = (resized_img - mean) / std
out_img.append(resized_img)
out_center.append(center)
out_scale.append(scale)
return out_img, out_center, out_scale
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
"""Inference RTMPose model.
Args:
sess (ort.InferenceSession): ONNXRuntime session.
img (np.ndarray): Input image in shape.
Returns:
outputs (np.ndarray): Output of RTMPose model.
"""
all_out = []
# build input
for i in range(len(img)):
input = [img[i].transpose(2, 0, 1)]
# build output
sess_input = {sess.get_inputs()[0].name: input}
sess_output = []
for out in sess.get_outputs():
sess_output.append(out.name)
# run model
outputs = sess.run(sess_output, sess_input)
all_out.append(outputs)
return all_out
def postprocess(outputs: List[np.ndarray],
model_input_size: Tuple[int, int],
center: Tuple[int, int],
scale: Tuple[int, int],
simcc_split_ratio: float = 2.0
) -> Tuple[np.ndarray, np.ndarray]:
"""Postprocess for RTMPose model output.
Args:
outputs (np.ndarray): Output of RTMPose model.
model_input_size (tuple): RTMPose model Input image size.
center (tuple): Center of bbox in shape (x, y).
scale (tuple): Scale of bbox in shape (w, h).
simcc_split_ratio (float): Split ratio of simcc.
Returns:
tuple:
- keypoints (np.ndarray): Rescaled keypoints.
- scores (np.ndarray): Model predict scores.
"""
all_key = []
all_score = []
for i in range(len(outputs)):
# use simcc to decode
simcc_x, simcc_y = outputs[i]
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
# rescale keypoints
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
all_key.append(keypoints[0])
all_score.append(scores[0])
return np.array(all_key), np.array(all_score)
def bbox_xyxy2cs(bbox: np.ndarray,
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
"""Transform the bbox format from (x,y,w,h) into (center, scale)
Args:
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
as (left, top, right, bottom)
padding (float): BBox padding factor that will be multilied to scale.
Default: 1.0
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
(n, 2)
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
(n, 2)
"""
# convert single bbox from (4, ) to (1, 4)
dim = bbox.ndim
if dim == 1:
bbox = bbox[None, :]
# get bbox center and scale
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
scale = np.hstack([x2 - x1, y2 - y1]) * padding
if dim == 1:
center = center[0]
scale = scale[0]
return center, scale
def _fix_aspect_ratio(bbox_scale: np.ndarray,
aspect_ratio: float) -> np.ndarray:
"""Extend the scale to match the given aspect ratio.
Args:
scale (np.ndarray): The image scale (w, h) in shape (2, )
aspect_ratio (float): The ratio of ``w/h``
Returns:
np.ndarray: The reshaped image scale in (2, )
"""
w, h = np.hsplit(bbox_scale, [1])
bbox_scale = np.where(w > h * aspect_ratio,
np.hstack([w, w / aspect_ratio]),
np.hstack([h * aspect_ratio, h]))
return bbox_scale
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
"""Rotate a point by an angle.
Args:
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
angle_rad (float): rotation angle in radian
Returns:
np.ndarray: Rotated point in shape (2, )
"""
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
rot_mat = np.array([[cs, -sn], [sn, cs]])
return rot_mat @ pt
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): The 1st point (x,y) in shape (2, )
b (np.ndarray): The 2nd point (x,y) in shape (2, )
Returns:
np.ndarray: The 3rd point.
"""
direction = a - b
c = b + np.r_[-direction[1], direction[0]]
return c
def get_warp_matrix(center: np.ndarray,
scale: np.ndarray,
rot: float,
output_size: Tuple[int, int],
shift: Tuple[float, float] = (0., 0.),
inv: bool = False) -> np.ndarray:
"""Calculate the affine transformation matrix that can warp the bbox area
in the input image to the output size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
scale (np.ndarray[2, ]): Scale of the bounding box
wrt [width, height].
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ] | list(2,)): Size of the
destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: A 2x3 transformation matrix
"""
shift = np.array(shift)
src_w = scale[0]
dst_w = output_size[0]
dst_h = output_size[1]
# compute transformation matrix
rot_rad = np.deg2rad(rot)
src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
dst_dir = np.array([0., dst_w * -0.5])
# get four corners of the src rectangle in the original image
src = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale * shift
src[1, :] = center + src_dir + scale * shift
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
# get four corners of the dst rectangle in the input image
dst = np.zeros((3, 2), dtype=np.float32)
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
if inv:
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return warp_mat
def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get the bbox image as the model input by affine transform.
Args:
input_size (dict): The input size of the model.
bbox_scale (dict): The bbox scale of the img.
bbox_center (dict): The bbox center of the img.
img (np.ndarray): The original image.
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: img after affine transform.
- np.ndarray[float32]: bbox scale after affine transform.
"""
w, h = input_size
warp_size = (int(w), int(h))
# reshape bbox to fixed aspect ratio
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
# get the affine matrix
center = bbox_center
scale = bbox_scale
rot = 0
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
# do affine transform
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
return img, bbox_scale
def get_simcc_maximum(simcc_x: np.ndarray,
simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from simcc representations.
Note:
instance number: N
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (N, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (N, K)
"""
N, K, Wx = simcc_x.shape
simcc_x = simcc_x.reshape(N * K, -1)
simcc_y = simcc_y.reshape(N * K, -1)
# get maximum value locations
x_locs = np.argmax(simcc_x, axis=1)
y_locs = np.argmax(simcc_y, axis=1)
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
max_val_x = np.amax(simcc_x, axis=1)
max_val_y = np.amax(simcc_y, axis=1)
# get maximum value across x and y axis
mask = max_val_x > max_val_y
max_val_x[mask] = max_val_y[mask]
vals = max_val_x
locs[vals <= 0.] = -1
# reshape
locs = locs.reshape(N, K, 2)
vals = vals.reshape(N, K)
return locs, vals
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
"""Modulate simcc distribution with Gaussian.
Args:
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
simcc_split_ratio (int): The split ratio of simcc.
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
- np.ndarray[float32]: scores in shape (K,) or (n, K)
"""
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
keypoints /= simcc_split_ratio
return keypoints, scores
def inference_pose(session, out_bbox, oriImg):
"""run pose detect
Args:
session (ort.InferenceSession): ONNXRuntime session.
out_bbox (np.ndarray): bbox list
oriImg (np.ndarray): Input image in shape.
Returns:
tuple:
- keypoints (np.ndarray): Rescaled keypoints.
- scores (np.ndarray): Model predict scores.
"""
h, w = session.get_inputs()[0].shape[2:]
model_input_size = (w, h)
# preprocess for rtm-pose model inference.
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
# run pose estimation for processed img
outputs = inference(session, resized_img)
# postprocess for rtm-pose model output.
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
return keypoints, scores
import decord
import numpy as np
from .util import draw_pose
from .dwpose_detector import dwpose_detector as dwprocessor
def get_video_pose(
video_path: str,
ref_image: np.ndarray,
sample_stride: int=1):
"""preprocess ref image pose and video pose
Args:
video_path (str): video pose path
ref_image (np.ndarray): reference image
sample_stride (int, optional): Defaults to 1.
Returns:
np.ndarray: sequence of video pose
"""
# select ref-keypoint from reference pose for pose rescale
ref_pose = dwprocessor(ref_image)
ref_keypoint_id = [0, 1, 2, 5, 8, 11, 14, 15, 16, 17]
ref_keypoint_id = [i for i in ref_keypoint_id \
if ref_pose['bodies']['score'].shape[0] > 0 and ref_pose['bodies']['score'][0][i] > 0.3]
ref_body = ref_pose['bodies']['candidate'][ref_keypoint_id]
height, width, _ = ref_image.shape
# read input video
vr = decord.VideoReader(video_path, ctx=decord.cpu(0))
sample_stride *= max(1, int(vr.get_avg_fps() / 24))
detected_poses = [dwprocessor(frm) for frm in vr.get_batch(list(range(0, len(vr), sample_stride))).asnumpy()]
detected_bodies = np.stack(
[p['bodies']['candidate'] for p in detected_poses if p['bodies']['candidate'].shape[0] == 18])[:,
ref_keypoint_id]
# compute linear-rescale params
ay, by = np.polyfit(detected_bodies[:, :, 1].flatten(), np.tile(ref_body[:, 1], len(detected_bodies)), 1)
fh, fw, _ = vr[0].shape
ax = ay / (fh / fw / height * width)
bx = np.mean(np.tile(ref_body[:, 0], len(detected_bodies)) - detected_bodies[:, :, 0].flatten() * ax)
a = np.array([ax, ay])
b = np.array([bx, by])
output_pose = []
# pose rescale
for detected_pose in detected_poses:
detected_pose['bodies']['candidate'] = detected_pose['bodies']['candidate'] * a + b
detected_pose['faces'] = detected_pose['faces'] * a + b
detected_pose['hands'] = detected_pose['hands'] * a + b
im = draw_pose(detected_pose, height, width)
output_pose.append(np.array(im))
return np.stack(output_pose)
def get_image_pose(ref_image):
"""process image pose
Args:
ref_image (np.ndarray): reference image pixel value
Returns:
np.ndarray: pose visual image in RGB-mode
"""
height, width, _ = ref_image.shape
ref_pose = dwprocessor(ref_image)
pose_img = draw_pose(ref_pose, height, width)
return np.array(pose_img)
import math
import numpy as np
import matplotlib
import cv2
eps = 0.01
def alpha_blend_color(color, alpha):
"""blend color according to point conf
"""
return [int(c * alpha) for c in color]
def draw_bodypose(canvas, candidate, subset, score):
H, W, C = canvas.shape
candidate = np.array(candidate)
subset = np.array(subset)
stickwidth = 4
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
conf = score[n][np.array(limbSeq[i]) - 1]
if conf[0] < 0.3 or conf[1] < 0.3:
continue
Y = candidate[index.astype(int), 0] * float(W)
X = candidate[index.astype(int), 1] * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, alpha_blend_color(colors[i], conf[0] * conf[1]))
canvas = (canvas * 0.6).astype(np.uint8)
for i in range(18):
for n in range(len(subset)):
index = int(subset[n][i])
if index == -1:
continue
x, y = candidate[index][0:2]
conf = score[n][i]
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, alpha_blend_color(colors[i], conf), thickness=-1)
return canvas
def draw_handpose(canvas, all_hand_peaks, all_hand_scores):
H, W, C = canvas.shape
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
for peaks, scores in zip(all_hand_peaks, all_hand_scores):
for ie, e in enumerate(edges):
x1, y1 = peaks[e[0]]
x2, y2 = peaks[e[1]]
x1 = int(x1 * W)
y1 = int(y1 * H)
x2 = int(x2 * W)
y2 = int(y2 * H)
score = int(scores[e[0]] * scores[e[1]] * 255)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(canvas, (x1, y1), (x2, y2),
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * score, thickness=2)
for i, keyponit in enumerate(peaks):
x, y = keyponit
x = int(x * W)
y = int(y * H)
score = int(scores[i] * 255)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, score), thickness=-1)
return canvas
def draw_facepose(canvas, all_lmks, all_scores):
H, W, C = canvas.shape
for lmks, scores in zip(all_lmks, all_scores):
for lmk, score in zip(lmks, scores):
x, y = lmk
x = int(x * W)
y = int(y * H)
conf = int(score * 255)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (conf, conf, conf), thickness=-1)
return canvas
def draw_pose(pose, H, W, include_body, include_hand, include_face, ref_w=2160):
"""vis dwpose outputs
Args:
pose (List): DWposeDetector outputs in dwpose_detector.py
H (int): height
W (int): width
ref_w (int, optional) Defaults to 2160.
Returns:
np.ndarray: image pixel value in RGB mode
"""
bodies = pose['bodies']
faces = pose['faces']
hands = pose['hands']
candidate = bodies['candidate']
subset = bodies['subset']
sz = min(H, W)
sr = (ref_w / sz) if sz != ref_w else 1
########################################## create zero canvas ##################################################
canvas = np.zeros(shape=(int(H*sr), int(W*sr), 3), dtype=np.uint8)
########################################### draw body pose #####################################################
if include_body:
canvas = draw_bodypose(canvas, candidate, subset, score=bodies['score'])
########################################### draw hand pose #####################################################
if include_hand:
canvas = draw_handpose(canvas, hands, pose['hands_score'])
########################################### draw face pose #####################################################
if include_face:
canvas = draw_facepose(canvas, faces, pose['faces_score'])
return cv2.cvtColor(cv2.resize(canvas, (W, H)), cv2.COLOR_BGR2RGB).transpose(2, 0, 1)
import numpy as np
import onnxruntime as ort
from .onnxdet import inference_detector
from .onnxpose import inference_pose
class Wholebody:
"""detect human pose by dwpose
"""
def __init__(self, model_det, model_pose, device="cpu"):
providers = ['CPUExecutionProvider'] if device == 'cpu' else ['CUDAExecutionProvider']
provider_options = None if device == 'cpu' else [{'device_id': 0}]
self.session_det = ort.InferenceSession(
path_or_bytes=model_det, providers=providers, provider_options=provider_options
)
self.session_pose = ort.InferenceSession(
path_or_bytes=model_pose, providers=providers, provider_options=provider_options
)
def __call__(self, oriImg):
"""call to process dwpose-detect
Args:
oriImg (np.ndarray): detected image
"""
det_result = inference_detector(self.session_det, oriImg)
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
keypoints_info = np.concatenate(
(keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > 0.3,
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[
..., :2], keypoints_info[..., 2]
return keypoints, scores
......@@ -3,6 +3,7 @@ from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
import sys
import numpy as np
script_directory = os.path.dirname(os.path.abspath(__file__))
sys.path.append(script_directory)
......@@ -27,7 +28,6 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from mimicmotion.modules.unet import UNetSpatioTemporalConditionModel
from mimicmotion.modules.pose_net import PoseNet
from mimicmotion.pipelines.pipeline_mimicmotion import MimicMotionPipeline
class MimicMotionModel(torch.nn.Module):
def __init__(self, base_model_path):
......@@ -181,14 +181,115 @@ class MimicMotionSampler:
print(frames.shape)
return frames,
class MimicMotionGetPoses:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ref_image": ("IMAGE",),
"pose_images": ("IMAGE",),
"include_body": ("BOOLEAN", {"default": True}),
"include_hand": ("BOOLEAN", {"default": True}),
"include_face": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "process"
CATEGORY = "MimicMotionWrapper"
def process(self, ref_image, pose_images, include_body, include_hand, include_face):
device = mm.get_torch_device()
from mimicmotion.dwpose.util import draw_pose
from mimicmotion.dwpose.dwpose_detector import DWposeDetector
yolo_model = "yolox_l.onnx"
dw_pose_model = "dw-ll_ucoco_384.onnx"
model_base_path = os.path.join(script_directory, "models", "DWPose")
model_det=os.path.join(model_base_path, yolo_model)
model_pose=os.path.join(model_base_path, dw_pose_model)
if not os.path.exists(model_det):
print(f"Downloading yolo model to: {model_base_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="yzd-v/DWPose",
allow_patterns=[f"*{yolo_model}*"],
local_dir=model_base_path,
local_dir_use_symlinks=False)
if not os.path.exists(model_pose):
print(f"Downloading dwpose model to: {model_base_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="yzd-v/DWPose",
allow_patterns=[f"*{dw_pose_model}*"],
local_dir=model_base_path,
local_dir_use_symlinks=False)
dwprocessor = DWposeDetector(
model_det=os.path.join(model_base_path, "yolox_l.onnx"),
model_pose=os.path.join(model_base_path, "dw-ll_ucoco_384.onnx"),
device=device)
ref_image = ref_image.squeeze(0).cpu().numpy() * 255
# select ref-keypoint from reference pose for pose rescale
ref_pose = dwprocessor(ref_image)
ref_keypoint_id = [0, 1, 2, 5, 8, 11, 14, 15, 16, 17]
ref_keypoint_id = [i for i in ref_keypoint_id \
if ref_pose['bodies']['score'].shape[0] > 0 and ref_pose['bodies']['score'][0][i] > 0.3]
ref_body = ref_pose['bodies']['candidate'][ref_keypoint_id]
height, width, _ = ref_image.shape
pose_images_np = pose_images.cpu().numpy() * 255
# read input video
detected_poses_np_list = []
for img_np in pose_images_np:
detected_poses_np_list.append(dwprocessor(img_np))
detected_bodies = np.stack(
[p['bodies']['candidate'] for p in detected_poses_np_list if p['bodies']['candidate'].shape[0] == 18])[:,
ref_keypoint_id]
# compute linear-rescale params
ay, by = np.polyfit(detected_bodies[:, :, 1].flatten(), np.tile(ref_body[:, 1], len(detected_bodies)), 1)
fh, fw, _ = pose_images_np[0].shape
ax = ay / (fh / fw / height * width)
bx = np.mean(np.tile(ref_body[:, 0], len(detected_bodies)) - detected_bodies[:, :, 0].flatten() * ax)
a = np.array([ax, ay])
b = np.array([bx, by])
output_pose = []
# pose rescale
for detected_pose in detected_poses_np_list:
detected_pose['bodies']['candidate'] = detected_pose['bodies']['candidate'] * a + b
detected_pose['faces'] = detected_pose['faces'] * a + b
detected_pose['hands'] = detected_pose['hands'] * a + b
im = draw_pose(detected_pose, height, width, include_body=include_body, include_hand=include_hand, include_face=include_face)
output_pose.append(np.array(im))
output_pose_tensors = [torch.tensor(np.array(im)) for im in output_pose]
output_tensor = torch.stack(output_pose_tensors) / 255
ref_pose_img = draw_pose(ref_pose, height, width, include_body=include_body, include_hand=include_hand, include_face=include_face)
ref_pose_tensor = torch.tensor(np.array(ref_pose_img)) / 255
output_tensor = torch.cat((ref_pose_tensor.unsqueeze(0), output_tensor))
output_tensor = output_tensor.permute(0, 2, 3, 1).cpu().float()
return output_tensor,
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadMimicMotionModel": DownloadAndLoadMimicMotionModel,
"MimicMotionSampler": MimicMotionSampler,
"MimicMotionGetPoses": MimicMotionGetPoses
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadMimicMotionModel": "DownloadAndLoadMimicMotionModel",
"MimicMotionSampler": "MimicMotionSampler",
"MimicMotionGetPoses": "MimicMotionGetPoses"
}
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论